HashMap的底层实现原理源码分析

HashMap是Java中非常实用且常用的一个集合,本文就JDK1.8进行HashMap的底层原理分析和性能优化。

一、HashMap的实现原理

在JDK1.6和JDK1.7中,HashMap采用存储位桶的数组 + 链表实现,即使用链表处理冲突,同一hash值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用数组 + 链表 + 红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。

当链表数组的容量超过初始容量的0.75时,再散列将链表数组扩大2倍,把原链表数组的搬移到新的数组中。

HashMap的原理图:

avatar

二、JDK1.8中涉及到的数据结构

1.位桶数组

1
2
3
4
5
6
7
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;

2.数组元素Node<K,V>实现了Entry接口

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// Node是单向链表,它实现了Map.Entry接口  
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;

// 构造函数:Hash值 键 值 下一个节点
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }

public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

// 判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}

3.红黑树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}

/**
* Returns root of tree containing this node.
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
// ......
}

三、源码中的数据域

加载因子(默认0.75):为什么需要使用加载因子,为什么需要扩容呢?因为如果填充比很大,说明利用的空间很多,如果一直不进行扩容的话,链表就会越来越长,这样查找的效率很低,因为链表的长度很大(最新版本使用了红黑树后会改进很多),扩容之后,将原来链表数组的每一个链表分成奇偶两个子链表分别挂在新链表数组的散列位置,这样就减少了每个链表的长度,增加查找效率。

HashMap本来是以空间换时间,所以填充比没必要太大。但是填充比太小又会导致空间浪费。如果关注内存,填充比可以稍大,如果主要关注查找性能,填充比可以稍小。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable {  
private static final long serialVersionUID = 362498820763181265L;
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 填充比
// 当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
transient Node<k,v>[] table; // 存储元素的数组
transient Set<map.entry<k,v>> entrySet;
transient int size; // 存放元素的个数
transient int modCount; // 被修改的次数fast-fail机制
int threshold; // 临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容
final float loadFactor; // 填充比
// .....
}

四、HashMap中的构造函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// 构造函数1  
public HashMap(int initialCapacity, float loadFactor) {
// 指定的初始容量非负
if (initialCapacity < 0)
throw new IllegalArgumentException(Illegal initial capacity: +
initialCapacity);
// 如果指定的初始容量大于最大容量,置为最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充比为正
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException(Illegal load factor: +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);// 新的扩容临界值
}

// 构造函数2
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

// 构造函数3
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

// 构造函数4: 用m的元素初始化散列映射
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}

五、HashMap的存取机制

get()流程:

get(key)方法时获取key的hash值,计算hash&(n-1)得到在链表数组中的位置first=tab[hash&(n-1)],先判断first的key是否与参数key相等,不等就遍历后面的链表找到相同的key值返回对应的Value值即可。

get源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public V get(Object key) {  
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab;//Entry对象数组
Node<K,V> first,e; //在tab数组中经过散列的第一个位置
int n;
K k;
/*找到插入的第一个Node,方法是hash值和n-1相与,tab[(n - 1) & hash]*/
//也就是说在一条链上的hash值相同的
if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {
/*检查第一个Node是不是要找的Node*/
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))//判断条件是hash值要相同,key值要相同
return first;
/*检查first后面的node*/
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
/*遍历后面的链表,找到key值和hash值都相同的Node*/
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

put流程:

1,判断键值对数组table[]是否为空或为null,否则以默认大小resize();
2,根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3
3,判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理

put源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
public V put(K key, V value) {  
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
/*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
/*表示有冲突,开始处理冲突*/
else {
Node<K,V> e;
K k;
/*检查第一个Node,p是不是要找的值*/
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
/*指针为空就挂在后面*/
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构             
//treeifyBin首先判断当前hashMap的长度,如果不足64,只进行
//resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
/*如果有相同的key值就结束遍历*/
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
/*就是链表上有相同的key值*/
if (e != null) { // existing mapping for key,就是key的Value存在
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;//返回存在的Value值
}
}
++modCount;
/*如果当前大小大于门限,门限原本是初始容量*0.75*/
if (++size > threshold)
resize();//扩容两倍
afterNodeInsertion(evict);
return null;
}

六、JDK1.8使用红黑树的改进

哈希碰撞:两个不同的原始值在经过哈希运算之后得到相同的结果。

在jdk8中对HashMap的源码进行了优化,在jdk7中,HashMap处理“碰撞”的时候,都是采用链表来存储,当碰撞的结点很多时,查询时间是O(N)。在jdk8中,HashMap处理“碰撞”增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当较大时(>8个),采用红黑树(特点是查询时间是O(logn))存储(有一个阀值控制,大于阀值(8个),将链表存储转换成红黑树存储),如下图:

avatar

问题分析:

哈希碰撞会对HashMap的性能带来灾难性的影响。如果多个hashCode()的值落到同一个桶内的时候,这些值是存储到一个链表中的。最坏的情况下,所有的key都映射到同一个桶中,这样HashMap就退化成了一个链表——查找时间从O(1)到O(n)。

随着HashMap的大小的增长,get()方法的开销也越来越大。由于所有的记录都在同一个桶里的超长链表内,平均查询一条记录就需要遍历一半的列表。

JDK8中的解决方式:

如果某个桶中的记录过大的话(当前是TREEIFY_THRESHOLD = 8),HashMap会动态的使用一个专门的TreeMap实现来替换掉它。这样做的结果会更好,是O(logn),而不是糟糕的O(n)。

JDK7中产生冲突的那些KEY对应的记录只是简单的追加到一个链表后面,这些记录只能通过遍历来进行查找。JDK8中超过这个阈值后HashMap开始将链表升级成一个二叉树,使用哈希值作为树的分支变量,如果两个哈希值不等,但指向同一个桶的话,较大的那个会插入到右子树里,较小的哪个会插入到左子树里。如果哈希值相等,HashMap希望key值最好是实现了Comparable接口的,这样它可以按照顺序来进行插入。这对HashMap的key来说实现Comparable接口并不是必须的,不过如果实现了当然最好。如果没有实现这个接口,在出现严重的哈希碰撞的时候,就别指望能获得性能提升了。

坚持原创技术分享,您的支持将鼓励我继续创作!

------本文结束 感谢您的阅读------